Flocks and crowds: active fluids

Denis BARTOLO Laboratoire de Physique, ENS de Lyon

Flock hydraulics

Crowd hydrodynamics

How does active matter flow?

Active Matter

We are active solids

Fish school

Jake Butters and Denis Bartolo

Bird flock

Starling flock, Roma (BBC)

Locust swarm

Active liquids

F. Nureldine, AFP

Steve Dunleavy

National geographic

National geographic

Flocks, schools and herds as spontaneously flowing liquids

Synthetic active matter

Synthetic active matter

Active emulsions

Thutupalli et al NJP (2011)

Active nematics

Sanchez et al Nature (2012)

Active colloids

Palacci et al Science (2013)

Active membranes

Keber et al Science (2014)

Synthetic flocks

Flocking fluids: laminar flows

Engineering flocking fluids

 $\phi \sim 3 \times 10^{-1}$

Self-propelled units

Colloidal rollers

Colloidal rollers

Spontaneous rotation

Colloidal rollers

Quincke rollers

 $\phi \sim 10^{-4}$

Flocking transition

 $\phi \sim 3 \times 10^{-1}$

Flocking fluids

Spontaneous laminar flows in channels and pipes

 $\phi \sim 3 \times 10^{-1}$

Active flows in pipe networks?

Active Hydraulics?

Hydraulics

Conveyance of liquids through pipes and channels

Hydraulics

Linear problem


```
Vein skeleton of a Hydrangea ,wikipedia
```


London's hydraulic Network 1960, Power water networks

Mass conservation

 $\mathbf{\mathbf{b}} \mathbf{\mathbf{J}}_i = \mathbf{0}$ node *i*

 \mathbf{J}_2

Edited by STEPHANIE ROST

THE ORIENTAL INSTITUTE OF THE UNIVERSITY OF CHICAGO ORIENTAL INSTITUTE SEMINARS • NUMBER 13

J3

Constitutive relation

Poiseuille (1840)

Darcy (1856)

Recherches expérimentales sur le mouvement des liquides, dans les tubes de très petits diamètres, 1840

Fontaines publiques de la ville de Dijon, 1856

$J = -K \Delta P$ Flux Pressure drop

Hydraulics Newtonian fluids

Pipe network geometry

Confined Active Flows: Nonlinear

Colloïdal rollers

Active fluids: Bistable flows

Colloïdal rollers

Active Hydraulics

Vertex problem

Bivalent Units

Trivalent Units

Pipe

Honeycomb Lattice

0.2 mm

Aspect ratio: 0.7-1.7

Colloidal Roller Fluid

Steady state: Uniform packing fraction

Steady state: Current statistics

Geomerical Frustration

Activity forbids uniform laminar flows

Geomerical Frustration

Opathalage et al PNAS 2019

Geomerical Frustration

Seven vertex configurations

Active Fluidic Network Theory

F. Woodhouse and J. Dunkel

Seven vertex configurations

Generators of self-avoiding random walks

Streamlines: Self-avoiding loops

Aspect ratio

Structural change

 $R_{\rm g} \sim L^{\nu}$

Gyrationradius

 $R_{\rm g} \sim L^{\nu}$

Aspect ratio

Steamlines as a landscape's contour map

Mont Blanc 4,808m | 15,777ft

Steamlines as a contour map

Aspect ratio

Nienhuis 1980's

Interactions between stream lines

Structrure of the zero-current channels

Coupling Symetries

Antiferromagnetic

Favors hairpins & crumples

Coupling Symetries?

Ferromagnetic

Ferromagnetic interactions prevails

Ferromagnetic

Ferromagnetic interactions prevails

Ferromagnetic

Favors Persistent & nested loops

Active Hydraulics

1 — Mass conservation 2 — Spontaneous flows

 $\sum_{j} \Phi_{ij} = 0 \quad \Phi_{ij} = \pm \Phi_{0}, 0$ $\Phi = 1 \qquad \Phi = 0$ $\Phi = -1$

Active Hydraulics

1 – Mass conservation 2 – Spontaneous flows

3- Topological-defect-mediated interactions

Three Coloring model

Active Hydraulics

Predicting flow patterns

Edge current: Node handedness

$$\Phi_{ij} = \pm 1,0$$
$$\sigma_i = \pm 1,0$$

Promote Spontaneous flows

$$\mathcal{H} = -J_{\mathrm{A}} \sum_{\langle i,j \rangle} \Phi_{ij}^2$$

Stramline Interactions

Minimize given the mass-conservation constraint

$$\sum_{j} \Phi_{ij} = 0$$

Theory

Crumpling of the stream lines

Active Hydraulics

- 1-Mass conservation $\sum_{\substack{\text{node }i\\ J_i = \pm J_0, 0}} J_i = 0$

3 — Defect-mediated interactions

Active Hydraulics

Crowd Hydrodynamics

Without any assumption about pedestrian behavior

Crowds as continua

Conservation laws & Constitutive relations

Experimental measurements

Controled perturbations

Hydrodynamic model
Chicago marathon

Chicago marathon

Image correction

Raw image

Corrected image

Density field

Crowd hydrostatics

 $ho_0 = 2.2 \pm .05 \, {
m m}^{-2}$

Crowd dynamics

 $10 \,\mathrm{m} \times 1 \,\mathrm{m}$ $\delta v \sim 10 \,\mathrm{cm/s}$

 $\mathbf{v}(\mathbf{x},t)$

Density-speed waves

Dynamic response to boundary perturbations

Constant wave speed

Linear response

Spectral analysis

Flow speed

Flow orientation

 $\varphi = \arg(\mathbf{v})$

Speed waves

Upstream transport only $\omega = -c_0q_x$ $c_0 = 1.2 \text{ m.s}^{-1}$

Diffusive damping $\alpha = D(\theta)q^2$

Slow 1D longitudinal dynamics

 $i\omega = -icq_x - D_0 q_x^2$

Orientational dynamics

Orientational fluctuations are overdamped

Orientational dynamics

Fast overdamped 2D dynamics

$$i\omega = -\alpha_0 - D_x q_x^2 - D_y q_y^2$$

Polarized crowds

1) Static polarised crowds are homogeneous $\mathbf{v} = \mathbf{0} \longrightarrow \rho = 2.2 \pm .05 \,\mathrm{m}^{-2}$

3) Flow speed: slow 1D dynamics, no intrinsic relaxation scale $i \omega = -i c_0 q_x - D_0 q_x^2$

4) Flow orientation: fast relation at all scales

 $i\omega = -\alpha_0 + \mathcal{O}(q^2)$

Crowd hydrodynamics

Conservation laws, symmetries & phenomenology

No behavioral assumption

Three fields

Simplifying observation

- People do not walk sideways

$$\hat{\mathbf{v}} = \hat{\mathbf{p}}$$

Conservation laws

Mass conservation:

$$\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \mathbf{v}) = 0$$

Momentum conservation:

$$\rho \mathbf{D}_{\mathbf{t}} \mathbf{v} = \nabla \cdot \boldsymbol{\sigma} + \mathbf{F}_{\mathbf{f}}$$

Overdamped angular dynamic

$$\partial_t \mathbf{p} = \mathbf{T}$$

Stress field

Momentum conservation:

Pressure stress

$$\rho \mathbf{D}_{\mathbf{t}} \mathbf{v} = \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \mathbf{F}_{\mathbf{f}} \qquad \boldsymbol{\sigma} = -P(\rho) + \mathcal{O}(\nabla)$$

Linear response

$$\nabla \cdot \sigma \sim -\beta \nabla \rho$$

Momentum conservation:

 $\rho \mathbf{D}_{\mathrm{t}} \mathbf{v} = -\beta \nabla \rho + \mathbf{F}_{\mathrm{f}}$

Friction Force

Momentum conservation:

 $\rho \mathbf{D}_{\mathrm{t}} \mathbf{v} = -\beta \nabla \rho + \mathbf{F}_{\mathrm{f}}$

Friction Force

 $\mathbf{F}_{f} = -\Gamma \cdot (\mathbf{v} - \nu_{0}\mathbf{p}) + \mathcal{O}(\nabla)$

Crowd hydrostatics

Force Balance

 $0 = -\beta \nabla \rho + \nu_0 \mathbf{p}$

 $\nu_0(\rho_0) = 0$

 ho_{0} = 2.2 \pm .05 m⁻²

Body torque

Angular dynamics $\partial_t \mathbf{p} = \mathbf{T}$

Polarized crowd hydrodynamics

$$\partial_t v - c_0 \,\partial_x v - D_0 \,\partial_x^2 v = 0$$

$$c_0 = -\rho_0 \nu_0'(\rho_0)$$

Active friction

 $D_0 = \frac{\rho_0 \beta}{\Gamma_x}$ Compressibility

Predictive theory?

 $\partial_t v - c_0 \,\partial_x v - D_0 \,\partial_x^2 v = 0$

2016 Chicago Marathon
2017 Chicago Marathon
2017 Paris Marathon
2017 Peach Tree Road Race
2018 Chicago Marathon

Predictive theory

Camille Jorge

Amélie Chardac

Alexis Poncet

Alexandre Morin

Delphine Geyer

www.bartololab.com

www.bartololab.com